第4回 今日の目標

§ 1. 6 論理演算と論理回路

- ブール代数の形式が使える
- 命題と論理関数の関係を示せる
- 論理関係を論理式、真理値表、ベン図で示せる
- ・ド・モルガンの定理を真理値表で示せる
- ・ 2つの命題を使った論理式を全て示せる
- 論理素子と論理回路の仕組みを理解する
- 回路記号を使って論理式を表現できる
- 加算器の原理を理解する

論理演算

ブール代数(Boolean algebra)

命題(proposition): 真偽が明確な事柄

例: A:母親は女である ⇒ 真(true)なる命題 A=1 B:母親は男である ⇒ 偽(false)なる命題 B=0 命題変数 命題のとる値 (論理変数)

論理変数; $A_1, A_2, \bullet \bullet \bullet, A_n$ 論理記号(一、十、 \bullet 、 \cap 、 \cup 、) 新しい命題(論理式) ; $F(A_1, A_2, \bullet \bullet \bullet, A_n)$

論理関数

命題

論理関数

A,B

X=F(A,B)

Aではない

Ā

否定(NOT)

AかつB

A•B

論理積(AND)

AまたはB

A+B

論理和(OR)

論理関係

論理式

 $X=\overline{A}$

 $X=A \cdot B$

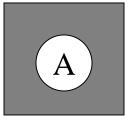
X=A+B

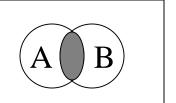
真理值表

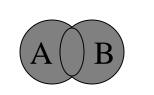
A	X
0	1
1	$\mid 0 \mid$

A	В	X
0	0	0
0	1	0
1	0	0
1	1	1

ベン図 Venn diagram







論理演算の基本公式

表 4.1 論理演算の基本公式

	(a)	(b)	
1	A+0=A	$A \cdot 1 = A$	
2	A + 1 = 1	$A \cdot 0 = 0$	
3	A+A=A	$A \cdot A = A$	ベキ等律
4	$A + \bar{A} = 1$	$A \cdot \bar{A} = 0$	排中律,矛盾律
5	$ar{A}\!=\!A$	自己双対	2重否定
6	A+B=B+A	$A \cdot B = B \cdot A$	交換律
7	(A+B)+C=A+(B+C)	$(A \cdot B) \cdot C = A \cdot (B \cdot C)$	結合律
8	$A+B\cdot C=(A+B)\cdot (A+C)$	$A \cdot (B+C) = A \cdot B + A \cdot C$	分配律
9	$A + A \cdot B = A$	$A \cdot (A+B) = A$	吸収律
10	$A + \bar{A} \cdot B = A + B$	$A \cdot (\bar{A} + B) = A \cdot B$	
11	$\overline{A+B} = \overline{A} \cdot \overline{B}$	$\overline{A\cdot B} = \overline{A} + \overline{B}$	ド・モルガンの定理
12	$A \cdot B + A \cdot \overline{B} = A$	$(A+B)\cdot(A+\overline{B})=A$	
13	$A \cdot B + B \cdot C + C \cdot \bar{A}$	$(A+B)\cdot (B+C)\cdot (C+\bar{A})$	
	$=\!A\!\cdot\! B\!+\!C\!\cdot\! \bar{A}$	$= (A+B) \cdot (C+\bar{A})$	
14	$(A+B)\cdot(\bar{A}+C)=\bar{A}B+AC$	自己双対	
15	$\overline{A \cdot C + B \cdot ar{C}} \! = \! ar{A} \cdot C \! + \! ar{B} \cdot ar{C}$	$\overline{(A+C)\cdot(B+\overline{C})} = (\overline{A}+C)$	$\cdot (\bar{B} + \bar{C})$

(a)と(b)は双対(演算で+と・、0と1入れ替えた論理演算式の組)

ド・モルガンの定理

$$\overline{A+B} = \overline{A} \cdot \overline{B}$$

$$\overline{A \cdot B} = \overline{A} + \overline{B}$$

A B	$\overline{A} \overline{B}$	A+B	$\overline{A+B}$	•B	A•B	•B	$\overline{A} + \overline{B}$
0 0	1 1	0	1	1	0	1	1
0 1	1 0	1	0	0	0	1	1
1 0	0 1	1	0	0	0	1	1
1 1	0 0	1	0	0	1	0	0

論理関数

A	0	1	論理式
F_0	0	0	0
F_1	0	1	A
F_2	1	0	$\overline{\mathbf{A}}$
F_3	1	1	1

Not AND
Not OR
eXclusive OR
EQuiValence
IMPlication

A B	0 0 1 1 0 1	論理式	
$ F_0 $	0 0 0 0	0	
$ F_1 $	0 0 0 1	A•B	AND
$ F_2 $	0 0 1 0	$A \cdot \overline{B}$	
F_3	0 0 1 1	A	
$ F_4 $	0 1 0 0	$\overline{\mathbf{A}} \cdot \mathbf{B}$	
F_5	0 1 0 1	В	
F_6	0 1 1 0	$\overline{A} \cdot B + A \cdot \overline{B}$	XOR
F_7	0 1 1 1	A+B	OR
$ F_8 $	1 0 0 0	$\overline{A} \cdot \overline{B} = \overline{A + B}$	NOR
F_9	1 0 0 1	$\overline{\underline{\mathbf{A}}} \cdot \overline{\mathbf{B}} + \mathbf{A} \cdot \mathbf{B}$	EQV
F_{10}	1 0 1 0	B	NOT B
$ F_{11} $	1 0 1 1	A+B	B IMP A
F_{12}	1 1 0 0	$\overline{\mathbf{A}}$	NOT A
$ F_{13} $	1 1 0 1		A IMP B
$ F_{14} $		$A+B=\overline{A\cdot B}$	NAND
F_{15}	1 1 1 1	1	

$X=\overline{A}$	•B

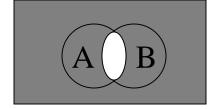
	•
$\mathbf{X} - \mathbf{\Lambda} + \mathbf{F}$	ł
$\Lambda - \Lambda \top \mathbf{I}$	J

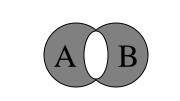
\mathbf{V}_{-}	- A .	D.	1 A	• D
Λ -	- /1	D	$\pm A$	CD

A	В	X
0	0	1
0	1	1
1	0	1
1	1	0

A	В	X
0	0	1
0	1	0
1	0	0
1	1	0

A	В	A •B	$A \cdot \overline{B}$	X
0	0	0	0	0
0	1	1	0	1
1	0	0	1	1
1	1	0	0	0

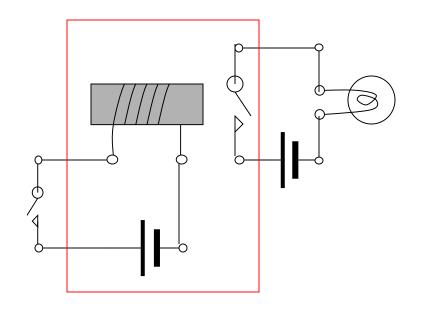


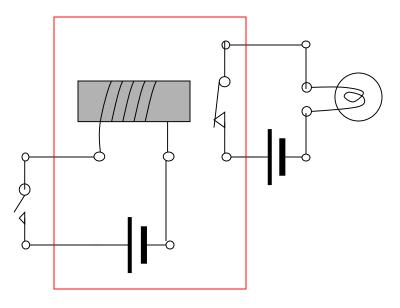


NAND (否定積) NOR 否定和

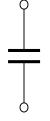
XOR 排他的論理和

論理素子

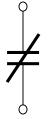




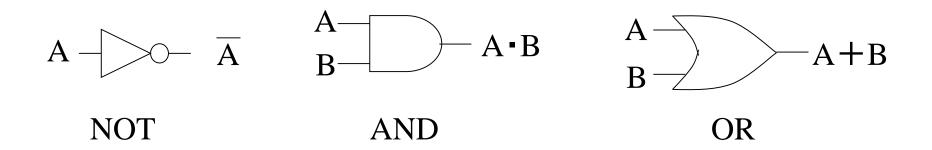
メイク接点リレー



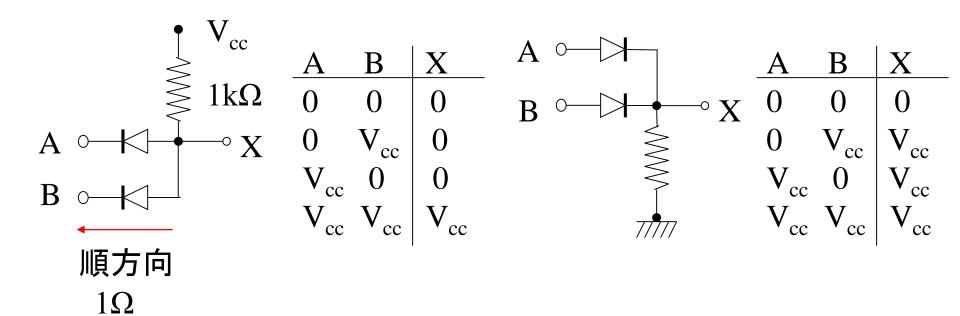
ブレーク接点リレー



論理回路

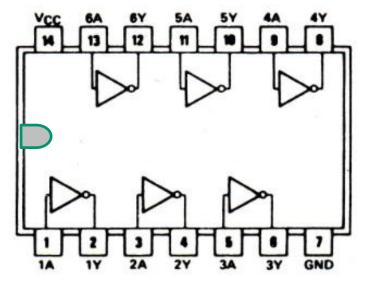


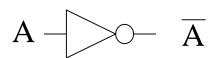
ダイオードを用いた論理回路



論理回路のIC(Integrated Circuit)

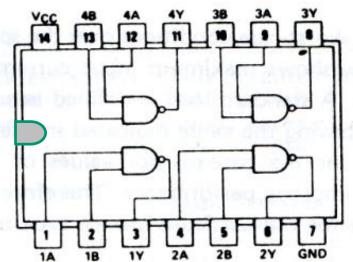
トランジスタ、FET、ダイオード、電気抵抗、コンデンサーの回路

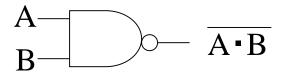




インバーター (NOT回路)

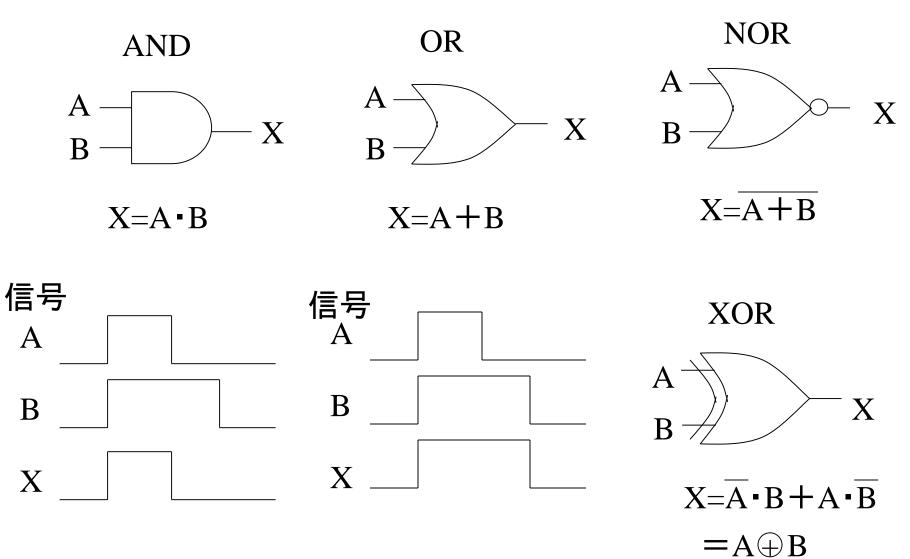
参考

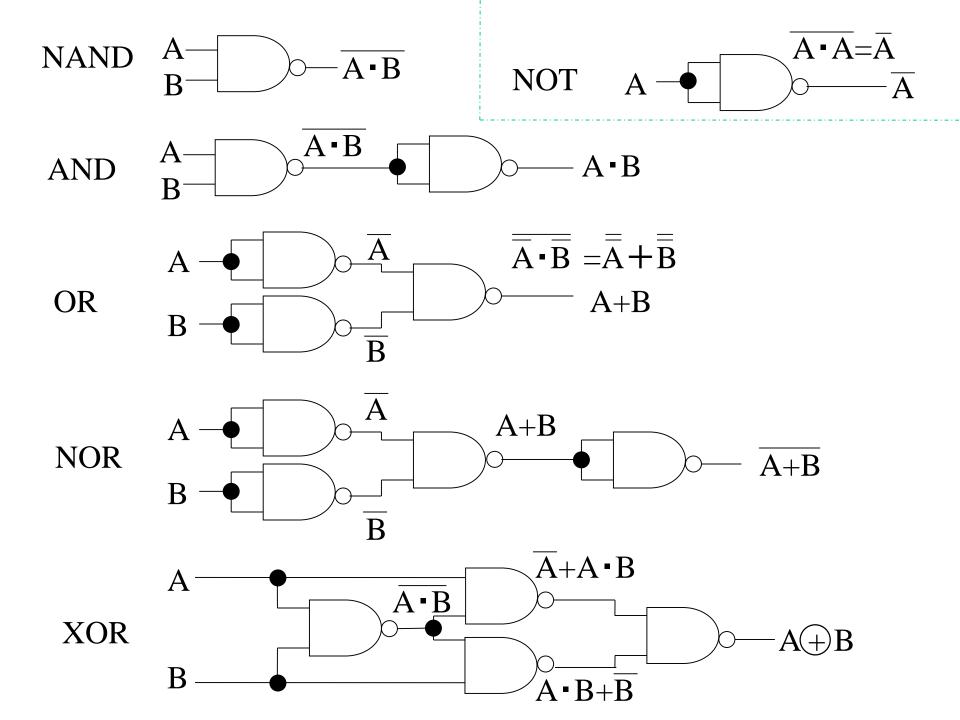




NAND回路

回路記号





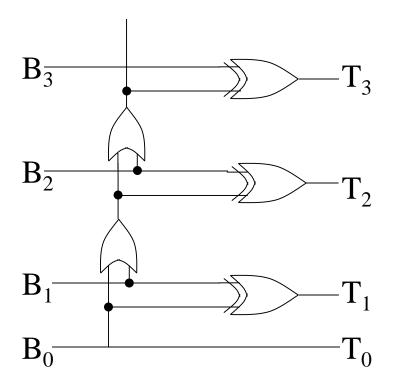
論理回路

1に対する補数

2に対する補数

B_3		\mathbf{C}_3
B_2		C_2
B_1		C_1
\mathbf{B}_0	-	C_0

$B_3 B_2 B_1 B_0$	$T_3 T_2 T_1 T_0$
0 0 0 0	0 0 0 0
0 0 0 1	1 1 1 1
0 0 1 0	1 1 1 0
0 0 1 1	1 1 0 1
0 1 0 0	1 1 0 0
0 1 0 1	1 0 1 1
0 1 1 0	1 0 1 0
0 1 1 1	1 0 0 1
1 0 0 0	1 0 0 0
1 0 0 1	0 1 1 1
1 0 1 0	0 1 1 0
1 0 1 1	0 1 0 1
1 1 0 0	0 1 0 0
1 1 0 1	0 0 1 1
1 1 1 0	0 0 1 0
1 1 1 1	0 0 0 1



加算器

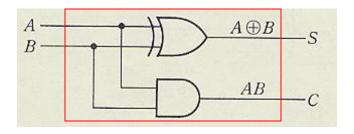
A	В	S	C
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

$$S = A \oplus B$$
$$C = A \cdot B$$

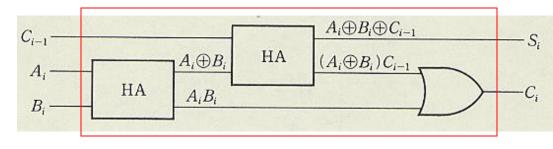
C_{i}
0
0
0
1
0
1
1
1

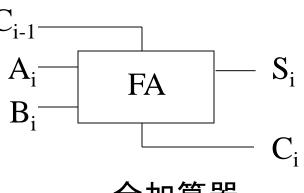
$$S_{i}=A_{i} \oplus B_{i} \oplus C_{i-1}$$

$$C_{i}=(A_{i} \oplus B_{i})C_{i-1} + A_{i}B_{i}$$

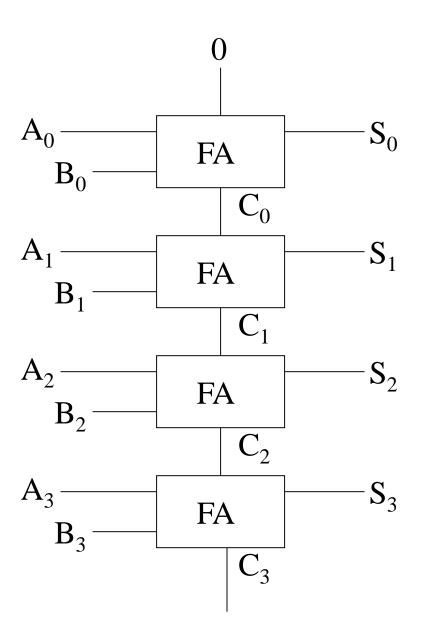


半加算器





全加算器



4ビット並列加算器

演習

次の論理演算を実行する論理回路を作りなさい。
 (1) A•B+C
 (2)(A+B)•C
 (3) A⊕B

2. 1のそれぞれの論理演算をNAND記号だけで組み直しなさい。

3. 論理式(Ā•B + A•B) のベン図と論理回路を作りなさい。

情報科学概論のトップへ 明治薬科大学のホームへ